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A new formulation is introduced for enforcing incompressibility in Smoothed
Particle Hydrodynamics (SPH). The method uses a fractional step with the velocity
field integrated forward in time without enforcing incompressibility. The resulting
intermediate velocity field is then projected onto a divergence-free space by solving a
pressure Poisson equation derived from an approximate pressure projection. Unlike
earlierapproaches used to simulate incompressible flows with SPH, the pressure is not
a thermodynamic variable and the Courant condition is based only on fluid velocities
and not on the speed of sound. Although larger time-steps can be used, the solution of
the resulting elliptic pressure Poisson equation increases the total work per time-step.
Efficiency comparisons show that the projection method has a significant potential
to reduce the overall computational expense compared to weakly compressible SPH,
particularly as the Reynolds numb&sg is increased. Simulations using this SPH
projection technique show good agreement with finite-difference solutions for a
vortex spin-down and Rayleigh—Taylor instability. The results, however, indicate
that the use of an approximate projection to enforce incompressibility leads to error
accumulation in the density field.o 1999 Academic Press

1. INTRODUCTION

Smoothed particle hydrodynamics (SPH) is a fully Lagrangian, particle-based techn
that has typically been used to simulate the motion of compressible fluids. It was origin
developed for astrophysical applications [12, 20] but has since been extended to mo
wide range of problems including multi-phase flows [23], deformation and impact proble
[34], and heat conduction [8]. More recently it has been extended and used to simulat
motion of incompressible fluids [24, 27]. Incompressibility is approximated in [24, 2
by assuming a compressible fluid with a large sound speed—typically a Mach nun
of M~ 0.1 is used. This approach will be termed here “weakly compressible” SPH
“WCSPH” and results obtained using this approach have been acceptable for free su
and some low Reynolds number flows, although not for fully confined moderate and |
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Reynolds number flows. Compressibility causes problems with sound wave reflectiol
the boundaries and the high sound speed leads to a crippling CFL time-step constrain
A different approach to modeling free surface, incompressible flows using a fu
Lagrangian technique was the particle method proposed by Kosh&tuMa[17], where
a penalty-like formulation was employed to adjust the pressure where density variati
occurred. An iterative process that converged when density changes were below a spe
tolerance was used. A similar approach was used in [18], where a pressure Poisson eqL
was solved instead of a penalty method with source term proportional to density variatic
It is not clear though how efficient or accurate these methods are for free surface mode
compared to the use of WCSPH.

More traditional approaches to solving the incompressible Navier—Stokes equation:
Eulerian grids often use an explicit projection to enforce incompressibility. Originally deve
oped in [7] and later adapted in [4], the projection approach has been employed extensi
in grid-based methods such as finite-difference [1, 5] and finite elements [14], but it has
been extended to the SPH environment.

In this paper, a technique that enforces incompressibility in SPH by employing an
proximate pressure projection is described. The method utilizes a fractional step with
velocity field first integrated forward in time without enforcing incompressibility. The re
sulting intermediate velocity field is projected onto a divergence-free space by solvin
pressure Poisson equation. Because the method uses an incompressible formulation, :
waves are not admitted and the CFL condition is based purely on the fluid velocity fie
allowing use of time steps significantly larger than those used in WCSPH. Although
allowable time-step increases when a pressure projection is employed, the projection
requires solution of an elliptic problem, and the amount of work per time-step increas
The objective of this paper is to present an SPH technique that utilizes a projection met
to model incompressible flows, and to investigate its efficiency and robustness compare
weakly compressible SPH. This SPH projection approach will be termed here “PSPH.”"
choices of time integration, projection operator, divergence, gradient, and viscous term:s
described along with the treatment of boundary conditions and the numerical technic
used to solve the resulting elliptic problem. Numerical results for a vortex spin-down pr¢
lem and a Rayleigh—Taylor instability are presented using both the projection method anc
weakly compressible approach. A comparison of the total CPU times of the two techniq
is also provided for the vortex spin-down. These results indicate that the proposed projec
method is more robust and more efficient than the current weakly compressible appro:

2. SPH PROJECTION METHOD

2.1. Weakly Compressible SPH

In SPH the fluid is represented by a set of particles which follow the fluid motion at
advect fluid quantities such as mass and momentum. In this Lagrangian framework,
Navier—Stokes equations are reduced to a set of ordinary differential equations at ¢
particle. Smoothness and differentiability of the solution are achieved using an interpola
kernelW and summations over the particles

Q(r)—Zmb—Wur—rm h)  and vcg(r)—Zmb—kur—rm h).
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Here histhe smoothing length, which in this paper is constant and is between 15imdds
the initial particle separation depending on the particular application. The mass, density,
position of particleb aremy, pp, andry,. There are a number of ways in which the Navier-
Stokes equations can be represented in SPH (see [25]). The formulation implemented
is described by Monaghan [25] and represents the non-dimensional momentum equati
particlea as

dug {( Py Pa) g

——=—> Mp|( =+ = |VaWab + xab| + = (1)
dt 2; pg | p2) T T Fr2

whereP, anduy, are the pressure and velocity at partibleThe pressure gradient term is
designed to conserve total linear and total angular momentum [25]. The viscous stre
areyxan, gis a body force, anér is the Froude number. In this study the viscosity treatmer
proposed in [9] is used,

11 4 Uap - lNab
= ——— VaWab, 2
Hab Reé (Pa+ﬁb> Fapl2 + 72 02 @)

whereé& is a calibration factor. In [9]¢ =0.2015 in Couette flow simulations is used.
However, comparisons between this viscosity treatment and that used in [27] to simu
low Reflows in SPH suggest that an appropriate value for the simulations presented in
paper it =0.24.

Density is evolved using the continuity equation

dpa
E = g mb(ua - Ub) ' VaWab- (3)

In (1) to (3),rap=ra — rp, Ugp = Uy — Up, andn is a small parameter included to ensure
that the denominator remains nonzero. The notafigpis shorthand for

1 r

where f is the interpolation kernel function andis the dimensionality of the problem.
There are many choices fdrand here, cubic or quartic spline kernel functions are uset
The cubic kernel function (normalized for one dimension) is defined as

1.0 — 3s?/2 + 3s%/4, 0<s<10

(2 —s)3/4, 10<s<20 (5)
0, s> 20

2

f(s):3

and is used to test the PSPH projection operator (see Section 2.3.2). The quartic |
kernel function (normalized for two dimensions) defined as

(25-95*—5(15-5%*+1005-5% 0<s<05

(2.5 —s)* —5(1.5 — s)%, 05<s<15

f(s) = 0.0255 (6)
(25— 9)4, 15<s<25
0, s>25

is used for the simulations presented in Section 3.
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In WCSPH simulations, the following equation of state [3] has been used [24],

- 22((2)'-)

wherec is the sound speed,= 7, andpy is the initial reference density. To approximate
incompressibility, a large value ofis employed, typically resulting in a flow Mach number
of M & 0.1. Because compressibility effects @¢M?), use of this Mach number, in theory,
should result in maximum density variations of the order of 1%.

2.2. Time Integration

A first-order Euler time-step is employed in this study for ease of discussion, althou
higher order schemes are easily implemented. The particle positipase advected with
velocity u to positionsr,

re=ra+ At(u]). (8)

At these positions, an intermediate velocity fialg, is calculated by integrating the SPH
momentum equation forward in time without the pressure gradient term:

ui =uj — At(Z Mp x5, (r) + F?2> 9)
b

The following pressure Poisson equation is then solved to obtain the pressure need
enforce incompressibility:

1 v.u
v. (-vp) _ Y (10)
P a At

The pressure gradient is next added to obtain a divergent-free velocity field:
ultt = uf — At Z mb( ) VaWap. (11)
,o

Finally, the particle positions are centered in time,

(12)

un+l+un
rg“:rngAt(a a).

2

The scheme i©(At) because an explicit treatment of the viscous term is used and t
projection is performed at particle positioristhat are found from a®(At) integration
of u}. The intermediate velocity field does not depend on the pressure gradient from th
previous time-step. This type of projection is termefuilhpressure projectionin contrast,
an incremental pressure projection projects an intermediate velocity field that incorpor:
the pressure gradient from the previous time-step. Combining a full pressure projec
with an approximate projection operator (see Section 2.3.2) has been shown to avoid «
accumulation in grid-based methods [30], and was also found to give superior results \
PSPH.
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2.3. Pressure Projection
2.3.1. Projection Fundamentals

In a projection method, the pressure needed to enforce incompressibility is found
projecting an estimate of the velocity field onto a divergence-free space. The theory bel
the projection approach is based on the Hodge decomposition which states that any ve
field, V, can be decomposed into a divergence-free compohéntand the gradient of
some scalakp (a curl-free component). Thus,

V =Vt ve. (13)
The projection operatoP, for a variable density flow is [5]
P=1-0G(DoG)!D, (14)

whereD is a divergence operatds, is a gradient operator, ant= % The projectior will
project any vectou* onto the space of divergence-free vector fields provided— (¢ G)T.
Typically, u* is an intermediate estimate of the velocity field obtained from updating tt
momentum equations either by using a time-lagged pressure gradient or by neglecting
pressure gradient altogether.

In the majority of projection techniques, the Hodge decomposition is undertaken
solving for the curl-free componeny,¢, and subtracting it from the original vectat.
This is achieved by solving the pressure Poisson equation (PPE)

Du*
At

DoGP =

(15)

for the pressurd® and subtracting\tc GP from u* to give the incompressible velocity
field unt+2:

u™l = u* — At(cGP). (16)

2.3.2. An SPH Projection Operator

There are a number of different grid-based projection algorithms discussed and analy
in the literature (e.g., [30]). Either an exact projection or an approximate projection c
be used. An exact projection operator is constructed by ensuring that the divergence
gradient operators are discretely skew adjoint, Des —(0G) . It can be shown that the
SPH divergence operator defined by

Up u
V'Uazpazmb<2+2>‘vawab (7)

a

is skew adjoint to the gradient operator used in (1) when the density is constant. Employ
these adjoint SPH divergence and gradient operators at constant density leads to the pre
Poisson equation

. Du*
(DG)H=Z%(Z%W,—W,—)-%W,— - A“t'. (18)
J
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pRESSURE
6.

b

FIG. 1. P vsy andt using a cubic spline kerndh=1.4Ax, N = 20. (a) Exact projection operator. (b) Ap-
proximate projection operator. Note the pressure decoupling using the exact projection operator.

This exact projection was tested on a simple one-dimensional hydrostatic equilibri
problem, using the cubic spline kernel given in (5) whth- 1.4AX. The results are shown
in Fig. 1a. The exact projection operator produces a distinct pressure decoupling pa
similar to that observed in exact projection methods on co-located finite-difference gr
[31]. Analogous problems have also occurred with equal-order interpolation element:
finite-element methods [32]. This type of problem also hampers convergence when itere
techniques are used to perform the projection.

Approximate projection methods were introduced (for example, [30]) in grid-based me
ods to avoid these decoupling problems. Unlike exact projection methods, the diverge
and gradient operators are not discretely skew adjoint but are chosen so that the Laplz
operator,L = Do G, is easily discretized. For example, on a two-dimensional co-locate
finite difference grid, the approximate projection operator is usually written as a five-po
Laplacian stencil whereas the exact projectior; Do G, results in four sets of decoupled
five-point stencils [30].

In this paper, an approximate projection is used which utilizes the following SPH ster
for the PPE operator in (10),

Mp < 4 ) Pab lap - VaVVab

L(Py) = DoG(Py) =S 2
(Fa) = BoG(Ro) zb:pb patpo) || +n?

, (19)

where P;p = P; — Py. This is analogous to the approximation used in [22] for therme
diffusion and also for the viscous diffusion term in (2). The approximate projection opera
was tested on the same one-dimensional hydrostatic equilibrium problem and the result
shown in Fig. 1b. It prevents the pressure decoupling that arises when an exact proje
is used.

2.4. Solvability and the PPE Source Term

Because the pressure Poisson equation (10) employs Neumann boundary conditior
P, acompatibility constraint must be satisfied in order for (10) to have a unique solution. T
constraint relates the source of the Poisson equation to the Neumann boundary condi
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through the divergence theorem,

1 v -u
/v. <VP>dV=/ - dV=/n-u*dS=0, (20)
v P v At Jr

providedu* satisfies the correct boundary conditions.
This implies that each time (10) is solved, the total sum of the discrete source tel
(ZiN:l V - uj) must be zero. In matrix form, the solution of the system

AP = b, (21)

where A= L = Do G (symmetric) ancb= Du*/At requiresb to be in the column space
of A, i.e.,be R(A). SinceA is constructed by using homogeneous Neumann bounda
conditions for the pressure, there exists a constant vextorthe left null space oA, i.e.,
Ac=0= ATc=c' A. Multiplying (21) byc' gives the constraint

c'b=0, (22)

which again implies that in discrete form, the sum of the source terms is

N
Y vour=o. (23)
i=1

On a finite-difference MAC grid, this solvability constraint is automatically satisfied fc
Neumann velocity boundary conditions. However on other grids, additional measures
required to satisfy it. For example, in [6, 33] solvability on a co-located grid was satisfi
by subtracting the mean value of the source term from each local discrete source whil
[1], the PPE was written in conservative form.

In PSPH, the solvability constraint is satisfied by employing the divergence opera
given by (17) (assumingn,/pq = my/pp). This expression is analogous to the pressur
gradient term in (1). Whereas the pressure gradient term in (1) conserves total momen
the divergence term in (17) conserves total mass.

2.4.1. Elliptic Solvers

There are many different techniques that can be used to solve (10). Here, two method
considered: a defect correction multi-grid method; and a conjugate gradient method \
a diagonal pre-conditioner. The multi-grid method was implemented in a spirit similar
that in [26], where it was used to solve for the gravitational potential in interstellar clot
simulations. Unlike in [26], the Poisson equation is satisfied on the particles rather thar
the underlying grid. This is done by treating the particles as the finest level grid. Coa
level grids are uniform rectangular grids, each of which has twice the grid spacing of
next finer grid. The first coarse mesh has a grid spacingsbf 2 2.5h. At the particle level
and all coarser levels, Gauss—Seidel relaxation is applied and the error restricted to the
level grid using the quartic spline kernel given by (6). At coarse levels, a standard def
correction multi-grid technique is used, with the correction prolonged to finer grids usi
a bilinear interpolation. Bilinear interpolation is also used to prolong the correction to t
particles. To avoid large memory requirements, the mairix L = Do G for the particle
level Gauss—Seidel and conjugate gradient iterations is stored in sparse form.
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2.5. Boundary Conditions

Two issues arise in the implementation of boundary conditions in the PSPH technic
The first issue is the choice of appropriate boundary conditions and the second isst
the method of application of these conditions. Homogeneous Neumann boundary co
tions are used for the pressure in (10) and the Dirichlet conditibrsw and u™! =w
are enforced on solid boundaries i€ the prescribed boundary velocity). These boundar
conditions do not satisfy the correct pressure boundary conditions required for the inc
pressible Navier—Stokes equations [15]; however, they have been shown to work we
practice when combined with projection methods [14]. These conditions are implemer
here using external, fictitious particles whose positions are defined by reflecting the i
rior fluid particles across the boundary position. The effect of these fictitious particles
implicitly included in the summations for the gradient, projection, and viscous operatt
in the following way. Referring to Fig. 2a, for a given particle pair interacten; b, an

(Pbr= Pp)
a b;@ A up= - up
w5 |
H
.2 _E._
be"
b
B PPN - (be=Pb)
t e R =Py B ! upe=-uy,
U= -uy
w=( v
:' ?
; w=0 £
' U= -y ol
| (PR i
' be '
v hr.,,, ............ Iaavs e I E -

FIG. 2. Boundary treatment. (a) For a partidlenear an edge interacting with a partielean additional
interaction needs to take place between partialesdbs. b is a fictitious particle that can be considered a
reflection ofb across the boundaries. (b) For a particieear a corner interacting with a partielgthree additional
interactions need to take place between partced the three reflected particles.
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additional interactiora — by is included in the summation. The fictitious partitie has
the following properties:

e Position—y, is found by a direct reflection of partickeacross the boundary line. The
position of particlebs therefore mirrors that db.

o \elocity—For the wall-bounded simulations in this paper, no slip velocity condition
up, =2w — uy and u[‘)f+l =2w — up™ are employed. This is a linear extrapolation of the
interior and boundary velocities to obtain the external velocity. It is similar to the techniq
used in finite-difference methods. In this way,, =w and u;* =w is ensured at any
point along the boundaryf, is a velocity along the boundary that would result from
interpolating the surrounding internal and assigned external particle velocities). This
important for obtaining an accurate representation of the viscous operator associated
particlea whena is near the boundary. Wheris on the boundary;, =wandul*! =wis
set and evaluation of the viscous termaas not required.

e Pressure-R,, = B, Inthis way, homogeneous Neumann boundary condil%ﬁns 0
are enforced along the boundary line. This is important for obtaining an accurate represe
tion of the projection and gradient operators associated with paatieteena is near or on
the boundary. Whea is on the boundaryp, is found by solving (10) withv - u; /At =0.
SettingV - u}/At =0 on the boundary is correct as longras (u* — w) =0 (see [15]),
which is consistent with the velocity boundary conditions applied here.

Figure 2b shows how this boundary treatment is generalized for corners.

Unlike the gradient, projection, and viscous operators, the effect of these fictitious pa
cles is not included in the summations for the divergence operator. This choice was Ir
to ensure that the solvability constraint (23) is automatically satisfied. It is possible to i
plicitly include these fictitious particles in the summations for the divergence operator, |
additional measures would then be required to satisfy solvability.

3. SIMULATIONS

To assess the accuracy and efficiency of the PSPH method, two problems (a t
dimensional vortex spin-down and a Rayleigh—Taylor instability) are calculated using

1. an exact projection method performed on a staggered finite-difference MAC g
(11];

2. the PSPH technique described in this paper with the quartic spline kernel (6) w
smoothing length = 1.3Ax (whereAx is the initial particle spacing); and

3. the WCSPH technique with the quartic spline kernel with smoothing ldngth.3Ax
and an equation of state given by (7).

For both PSPH and WCSPH, a quantitative measure of incompressibility is provided
PSPH and WCSPH by evaluating the coefficient of variation of number de@sityt),
as a function of time. It is a measure of the average variation of number density, at ea
particle normalized with respect to the average number density, and is given by

VE S @) - di(0)2

15N d® ’
N Zi:l di (0)

CV(t) = (24)

where the number density at partieed,, is the interpolant of p/m), and is estimated
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using

N
da = Z Wab- (25)
b=1

In an ideal incompressible SPH, particles would be advected to positions such |
CV(t) =0 for all timest.

3.1. Vortex Spin-down

A two-dimensional vortex spin-down Rie= 420 is calculated, withh =1, g=10, and an
initial velocity field given by

u=0.25y-05)

(26)
v = 0.25(0.5 - x)
in a unit square with boundary conditiows= 0. The simulation was run from tinte= 0 to
10 using an exact projection on a staggered finite-difference MAC grid, the PSPH technic
and the WCSPH technique with the following specifications:

1. exact projectiors 128 x 128 grid;

2. PSPH methoegs 50 x 50 particle lattice;

3. WCSPH method= 50 x 50 particle lattice with sound speext=1.25 using
Lennard-Jones type boundary forces (see Section 3.1.1).

The exact projection case is performed at a higher resolution to provide a close-to-“ex
solution, from which both SPH techniques can be compared.

3.1.1. Optimal WCSPH Solution

As the choice of sound speed and boundary conditions can significantly affect the
sults of a compressible SPH simulation, six WCSPH simulations were calculated for 1
problem from which the best solution was chosen. In the first three simulations, the bou
ary conditions outlined in Section 2.5 (termed here as “PSPH boundary conditions”) w
employed with sound speeds=5.00, c=2.50, andc =1.25. Figure 3 shows the decay
of the maximum velocity magnitude (nhormalized with respect to the initial maximum v
locity magnitude) with time resulting from these three simulations. The remaining thr
simulations were performed using the same three sound speeds with boundary part
exerting Lennard-Jones type forces on fluid particles described in [24]. Figure 4 reve
the corresponding velocity decay graphs. All six simulations show large oscillations
to timet = 2.0 which decay as the maximum velocity decays. For both boundary con
tions, the use 0€ =5.00 leads to a noticeably faster decay rate than the use=f.25
andc=2.50 and oscillations near time=9.0. Further investigation of these oscillations
reveals that they also occur fo=2.50 andc=1.25 at later times (at time=12.0 for
c=2.50 and at tim& = 16.0 for c = 1.25) and eventually lead to instabilities. Animations
of the spin-down velocity field show that the wavelength of the oscillation is large relati
to the particle spacing, indicating that it is a result of sound wave propagation rather t
a short wavelength tensile instability discussed in [28]. Cleary [10] has reported simi
sound wave propagations when simulating hydrostatic equilibrium using WCSPH. No s
instabilities were noted for the PSPH method.
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FIG. 3. Vortex spin-down velocity decay using WCSPH with sound speed&.25, c=2.50, andc =5.00
with PSPH boundary conditions.

The results foc = 1.25 andc = 2.50 using PSPH boundary conditions shown in Fig. 2
display a large anomalous jump in maximum velocity at ttreeB.50 which is not observed
for c=5.00. Analysis of the particle velocities at this time reveals that these velocities oct
at particles close to the boundary which are repelled from the boundary because of
PSPH boundary conditions. These anomalies were not observed when Lennard-Jones

1.0 [

© © ©
IS o o0

©
N

Max. Velocity (Normalised)

©
o

Time

FIG. 4. Vortex spin-down velocity decay using WCSPH with sound speed4.25, c=2.50, andc =5.00
with Lennard-Jones type boundary forces.
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boundary forces were used because these forces prevent particles from getting too clc
the boundary.

This exercise highlights a major disadvantage of WCSPH—the need to refine result
ensure that an appropriate combination of sound speed and boundary conditions is
to give the most accurate solution. No such refinement was required for PSPH. Of the
tests performed, the simulation using- 1.25 with Lennard-Jones type boundary forces
provided the best comparison to the exact projection velocity solution and is used as
optimum WCSPH result in comparisons with PSPH and the exact projection technique

3.1.2. Results

Figure 5 shows the streamlines and velocity vectadrs= for the exact projection, PSPH,
and WCSPH. The PSPH technique compares favorably with the finite-difference ex
projection technique but the WCSPH result not only exhibits noise (due to the contint
propagation and reflection of the sound waves off the solid boundaries) but also experie
an increase in the effective viscosity of the flow. This increase in effective viscosity f
WCSPH is also seen in Fig. 7, which shows the decay of the maximum velocity magnitt
with time for all three techniques. The PSPH results compare well to the finite-differer
exact projection results throughout the entire simulation while the WCSPH technique gi
rise to a faster decay.

Figure 8 show the variation @V with time for the two SPH methods. Results from PSPF
show a slow accumulation of density variation, witkl climbing steadily to 015 att = 10.
After this time, the rate of increase @V significantly reduces; by time= 15 it rises only
to 0.016. (This is not entirely unexpected as the velocities and hence particle motion h
reduced significantly after time=10.) Results from the WCSPH technique initially rise
rapidly toCV=0.015 and then stabilize at approximat&y/ = 0.009, remaining almost
constant after this time. The particle positiong at10 shown in Fig. 6 provide insight
into the behaviour o€V shown in Fig. 8. Slight gaps are visible in the particle position:
resulting from PSPH. These gaps gradually appear as the simulation progresses an
a result of the fact that the shear field repeatedly compresses the flow in one direc
and extends it in another. In the WCSPH technique, a line of particles forms along
boundary which is related to the use of boundary forces. This lining of particles occi
early in the simulationt(< 1) and is the probable cause of the sudden rigé\irearly in
the simulation.

The PSPH technique provides more accurate results for the velocity fields; it does, h
ever, accumulate more error in local density (as seen by_¥heomparisons in Fig. 8).
(Similar results were noted for this particular problem when run with doubly periodic bour
ary conditions rather than solid wall boundaries. The WCSPH technique again product
larger velocity decay rate relative to the PSPH and exact projection methods and osc
tions toward the end of the simulation, but a smaltstvalue. The PSPH method produced
CV=0.024 by timet =15.0 compared taCV=0.005 for WCSPH.) This accumulation
in local density error for the PSPH technique is not surprising since, for any projecti
method, the resulting velocity™*! is divergence free only to within a spatial truncation
error. Hence, errors in particle positions will result in density errors. Subsequent projecti
are therefore performed at incorrect particle positions, causing further error accumulat
Similar error accumulation occurs in vortex methods [29] and particle-in-cell methods [1
which can be remedied by the use of rezoning techniques.
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FIG. 6. Vortex spin-down particle positions at tinhe= 10. (a) PSPH method. (b) WCSPH method.

3.2. Rayleigh—Taylor Instability

The vortex spin-down problem does not utilize the natural advantages that Lagrang
SPH methods have over grid-based methods. A more appropriate test case of the F
method is the Rayleigh—Taylor instability in which the location of two different fluids an
the interface that separates them must be accurately followed. This phenomenon occt
a multitude of physical and industrial applications.

The initial conditions and specifications of the instability are given in Fig. 9. In this pap¢
the different fluid densities were set by using particles with different masses but the s:

1.0 .' L A A L ]
/g =
% 0.8 X 7
© SR Compress. SPH ~~~~~~~ 1
£ TN, SPH Projection i ]
S 0.6 " Exact Projection ]
> I
g 0.4 N
o
= I
X 0.2r __
= I ]
0.0 L | ] | | ]
0 2 4 6 8 10

Time

FIG. 7. \ortex spin-down velocity decay using PSPH (denoted as SPH Projection), WCSPH (with Lenna
Jones type boundary forces ang 1.25, denoted as Compress. SPH), and the Exact Projection.
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FIG. 8. Vortex spin-downCV for PSPH (denoted as SPH Projection) and WCSPH (denoted as Compre
SPH).
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FIG. 9. Initial conditions and specifications of the Rayleigh—Taylor instability.
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number density, although this is not the only way to achieve different densities in SPH. -
simulation was performed using

1. exact projectiors 16 x 32 staggered MAC grid (using a volume tracking methoc
to track the interface) [11];

2. PSPH methoek 53 x 105 particle lattice;

3. WCSPH methods 53 x 105 particle lattice with sound speed= 10,/([g/H) =
14.14 [24], whereH = 2 is the maximum height with Lennard-Jones type boundary force
employed.

Unlike the vortex spin-down, where increased resolution does not result in finer scale
motion (just smoother and more accurate results), numerical simulation of the Raylei
Taylor instability keeps on producing finer scales of density stratification until the resoluti
of the method is reached. When comparing the results for this problem, it is importan
ensure that the resolution of the SPH and finite difference methods are equivalent.
typical finite-difference simulation, the effective resolution scales with gridAsie,. In a
typical SPH simulation, however, the effective resolution scales with the smoothing dista
of the kernel (25h when using the quartic spline kernel given by (6)). For a5B)5 SPH
particle lattice using the quartic spline kernel énd 1.3Ax, the equivalent finite-difference
resolution is approximately a 2632 grid.

The interface positions at timés= 3 andt =5 for each method are shown in Figs. 10
and 11 and the streamlinestat 5 are shown in Fig. 12. The results for PSPH are close
to the results from the exact projection in both the interface position and streamlines v
more fine scale structure predicted. However, by timeb, the plume is beginning to roll
up in the finite-difference simulation, but not in either of the SPH simulations.

This highlights a tendency for particles in some SPH simulations to “clump” togeth
near interfaces of different materials, producing an artificial surface tension that preve
regions of high curvature from forming. This particle clumping is illustrated in Fig. 1:
which shows a plot of the particles near the interface at time3. Hoover [16] has also

a b c

1.5

0.5

L8 AT
e et

o i o [+ = Sl N
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(=]

0 02040608 1
X X X

FIG. 10. Interface positions at timeé= 3 for the Rayleigh—Taylor instability using (a) Exact Projection,
(b) PSPH, (c) WCSPH.
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FIG. 11. Interface positions at time=5 for the Rayleigh—Taylor instability using (a) Exact Projection,
(b) PSPH, (c) WCSPH.

noted this artificial surface tension in SPH and attributes it to the properties of the pres:
gradient operator used in this paper (see (1)). Both the divergence and gradient oper
(see (1) and (17)) are formulated assuming a differentiable density field and large der
discontinuities (such as those found at a fluid—fluid interface) cannot be accurately mod
using these operators.

In Fig. 14,CVis plotted for PSPH and WCSPH. Like the use of the vortex spin-dow:
the use of the PSPH method results in a slow accumulation of density variatio€With
climbing steadily to 011 att = 15. The WCSPH technique, in contrast, produces a larg
density variation error, witieVrising continually to approximately.052 byt = 7 and then

> >
o ] r—I—’-—'1 o o o RV B
0 02040608 1 0 02040608 1 0 02040608 1
X X X

FIG. 12. Streamlines at time=>5 for the Rayleigh—Taylor instability using (a) Exact Projection, (b) PSPH,
(c) WCSPH.
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FIG. 13. Particle positions at time= 3 for the Rayleigh—Taylor instability using PSPH.

remaining approximately constant after this. This behavior is markedly different from tt
produced by the vortex spin-down, which displayed an initial sharp ri€d/ithat leveled
off to 0.012. In terms of local density conservation, PSPH has performed far better t
WCSPH for this Rayleigh—Taylor instability.

To ensure that the most appropriate combination of sound speed and boundary
ditions was chosen, the simulation was also run with sound spee®9./(jg/H) and
c¢=5./(J]g/H) using the Lennard-Jones boundary forces and sound spee?B,/(Jg/H),
c=10/(Jg/H), and c¢=5./(Jg/H) using PSPH boundary conditions. Using the

0.06 o T T e

0.04 -

SPH Projection oo
Compress. SPH ——— -

Cv

0.02

ooolf .

Time

FIG. 14. Rayleigh—Taylor instabilityCV for PSPH (denoted as SPH Projection) and WCSPH (denoted ¢
Compress. SPH) .
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Lennard-Jones boundary forces, rather than PSPH boundary conditions, resulted in t
stable and robust solutions for all sound speeds. Combining these boundary condit
with sound speed= 20,/(|g|H) reduced the density error, produci@y = 0.048 by time

t =15.0, but gave poorer velocity comparisons. In contrast, usiad./(Jg/H) produced
more comparable velocity fields but larger density errors, @\h= 0.062 by timet = 15.0.
Thus, the use of all three sound speeds in WCSPH still prodO®eglues significantly
larger than those produced by PSPH for the Rayleigh—Taylor instability. It is interesting
note that the vortex spin-down problem produced a laiyéralue using PSPHIV=0.016

by timet = 15.0) than did the Rayleigh—Taylor instabilit€{/= 0.011 by timet = 15.0),
despite the larger displacement of particles in the Rayleigh—Taylor problem. This is pro
bly due to the more repetitive nature of the spin-down problem, which repeatedly stretc
the flow in the same direction.

3.3. Efficiency

The efficiency of the PSPH method was estimated by measuring the total CPU tir
required to run the vortex spin-down problem to titne 0.5 using:

1. WCSPH method (Compr.);

2. PSPH method, using multi-grid to solve (10) (MG);

3. PSPH method, using a conjugate gradient method with a diagonal pre-conditio
to solve (10) (CGPD).

The Reynolds humber was set at 420 and grid resolutions ranging frer@ 2% 105x< 105
were considered. The simulations were run on an R10000 SGI Power Challenge.

For the PSPH method &e= 420, the time-step is governed by the CFL stability con-
straint

0.25h
<

= [Ulmax

At (27)

for resolutions less than 59 50. For higher resolutions, the viscous diffusion condition
At < 0.125 Reh? (28)

is the dominant time-step constraint, where (28) is based on the Fourier stability anal
for a finite-difference method on a uniform mesh.
For the WCSPH technique Re= 420, At is governed by the CFL stability constraint

0.25h
At < ——

(29)
(where the sound speed= 1.25) for all resolutions.

Figure 15 provides the efficiency comparison results. The multi-grid projection is ¢
ways more efficient than the weakly compressible technique, particularly so at the loy
and medium resolutions where the CFL condition governs. However, as the resolution
creases and the time-step constraint becomes more severe for the projection technique
At o< h? due to the viscous diffusion condition), the time taken for the multi-grid projectio
approaches the weakly compressible time. The conjugate gradient technique is also |
efficient than the weakly compressible SPH but only for resolutions less than&D
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FIG. 15. Vortex spin-down efficiency comparisons. CPU measurements for WCSPH (Compr.), multi-gi
PSPH (MG), and the conjugate gradient PSPH Projection with diagonal pre-conditioner (CGPD).

This is due in part to the fact that the diffusion time-step constraint becomes more se\
with resolution, but it is also due to the increasing work required per time-step. In b
the multi-grid projection and weakly compressible techniques, the work per time-step \
O(N) (since the multi-grid method obtained mesh independent convergence rates) whe
for the conjugate gradient method, the number of iterations required for convergence
time-step increased with resolution.

3.4. Convergence Analysis

A convergence analysis was performed for the vortex spin-down problem for PSPH :
WCSPH attimes = 1.0 through td = 5.0. This analysis was performed in a manner simila
to that in which the analyses were done in [5, 30]. For the PSPH technique, at a given ti
a solution was computed on particle latticesx227, 53x 53, and 105< 105. In order to
remove the effect of time discretization errors, a uniform time-atép- 0.001 was used
for all resolutions. An estimate of the! andL? errors for the velocity on the 27 27 lattice
can be obtained by interpolating the velocities from thex583 lattice onto the 2% 27
lattice (using the quartic spline kernel given in (6)) and finding the difference between thi
interpolated velocities and the actual velocities on the 27 lattice. Similarly, an estimate
of the errors on the 53 53 lattice can be obtained using the velocities on thex1. 065
lattice. Table | provides the convergence results for the PSPH technique. At no time
O(Ax?) accuracy recorded with convergence rate®oAx%) to O(Ax?) obtained for
both L and L? norms. The convergence rate decreases as the integration time incre
and particles become more disordered.

The same convergence analysis was performed on the WCSPH technique using pa
lattices 32x 32, 64x 64, and 128« 128 and a uniform time-stefit =5.0 x 104, Table II
provides the results as in the PSPH technigDéAx?) accuracy is not observed with
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TABLE |
Convergence Results fot.* and L? Velocity Norms
Using the PSPH Method with the Quartic
Spline Kernel andh = 1.3AXx

Time | (272 —53?%) | (537 - 105%) | @ — O(Az?)
AR e 2| L2
x1073 x10~¢
1.0 [1.043 1.758 {3.885 6.866 | L.46  1.39
2.0 |[1.050 1.761|3.837 6.201|1.49 155
3.0 | 0916 1547 |3.993 6.586 | 1.23  1.27
4.0 |0.866 1413|4112 6.566 | 1.11 1.14
50 |0.807 1.342|4.183 6.397|0.97 1.10

convergence rates @(Ax?) to O(Ax%®) obtained. The convergence rate also decreas
as the integration time increases and particles become more disordered.

Gingold and Monaghan [13] state th@ath?) truncation error is typically expected in an
SPH simulation. However, in this stud®(h?) accuracy is not obtained for either thé
or the L2 velocity norm for the given spline kernel and smoothing lerfgth Ax. In fact,
Monaghan [21] noted that to obta®(Ax?) accuracy, a smoothing lengthx Ax9,q < 1,
is required (assuming that the flow is sufficiently smooth). Similar conclusions were a
reached in [29], where a convergence analysis was performed for the vortex method (w
uses smoothing kernels to evaluate a convolved velocity field from a discrete set of vo
blobs), and [2], where smoothing kernels were used to evaluate surface tension forces

To test this assertion further, a convergence analysisdon x%° (usingh = 0.23Ax%5)
was performed for the PSPH method onx227, 50x 50, and 88« 88 particle lattices, the
results of which are shown in Table Ill. While the convergence rates do indeed increase, \
rates ofO(Ax1?) to O(AxY") recorded O(Ax?) convergence is not observed. This lack
of second-order convergence is due to the fact that solid wall boundaries prevent suffic
smoothness in the flow. The boundary conditions used to model these solid walls |
Section 2.5) are also a source of error leading to further reductions in convergence rate
isolate the effect of the solid wall boundary conditions on convergence rate, a converge
analysis for the spin-down with doubly periodic boundary conditions was performed us
PSPH. The use of periodic boundary conditions resulted in higher convergence rates
smoothing length$1 = 1.3Ax andh =0.23Ax%°. Rates ofO(Ax'4) were consistently

TABLE Il
Convergence Results fot.* and L? Velocity Norms
Using the WCSPH Method with the Quartic
Spline Kernel andh = 1.3AXx

Time | (322 — 64%) | (642 — 1287) | Q — O(Az?)
2 7 S AR~ I 2 7
x1073 %1073
10 [6.991 8762 |2.956 3.824 | 1.24 1.20
20 |5694 7.332|2541 3301|116 1.15
3.0 |4397 5902|2126 2778|105 1.09
40 |3.100 4.472 | 1.711 2.255 | 0.86 0.9
50 |1.863 3.042(1.296 1.732 052 0.81
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TABLE 11l
Convergence Results fot.* and L? Velocity Norms
Using the PSPH Method with the Quartic
Spline Kernel and h = 0.23Ax%°

Time | (272 -50%) | (50° —88%) | Q — O(Az9)
Lt L? 2 JEEN A L?
x1072 x10~4
1.0 [0.723 1286|2670 5.050|1.72 161
2.0 10768 1.285|2.520 4.500]1.92 181
3.0 10803 1.338|2913 4771|175 1.78
40 {0930 1.5343.350 5.162|1.76 1.89
50 |0.983 1.600|3.631 5490|172 1.84

observed foth = 1.3Ax while for h=0.23Ax%%, convergence rates ov€¥(Ax?) were
observed.

4. CONCLUSIONS

The results presented in this study indicate that the PSPH technique has the potent
simulate moderatReincompressible flows more accurately and more efficiently than tt
present WCSPH technique. Its primary advantage is that it eliminates the requirement
a sound speed and the problems associated with it (such as a restrictive Courant time
control) and is an alternative tool in analyzing the performance of SPH in the incompress
environment.

Extensions of the technique to complicated domains are relatively straightforward, w
the main difficulties being a more generalized boundary treatment for the gradient, |
jection, and viscous operators and implementation of an efficient elliptic solver. Howev
further development of the method is required before it becomes a useful tool in simu
ing incompressible fluid flows, particularly in the areas related to error accumulation in 1
density field. It is possible that a different choice of projection operator may be one area
could reduce this error accumulation. Additional work is also needed for cases involv
free surfaces and inflow and outflow boundary conditions.
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